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Abstract
Signature verification has shown tremendous potential as a reliable biometric in both academic research and industrial appli-
cations. With the advent of deep learning, signature verification has made remarkable progress in the past decade. However,
despite significant progress, detecting subtle differences between genuine and forged signatures remains a challenge, raising
concerns over privacy protection and data security in signature verification systems. Recently, the tremendous success of
transformers in Natural Language Processing has led to their extension to computer vision, resulting in significant advance-
ments. The multi-head self-attention mechanism is considered crucial for the success of Transformer. As the name implies,
its query, key, and value all originate from the same sequence, rendering it suitable for single input tasks. However, pairwise
signature verification treats reference and query signature images equally as two independent inputs. Regarding this matter,
the mere amalgamation of the two independent inputs in the form of a single sequence inevitably leads to potential inherent
issues. To tackle this problem, we present a Pairwise Attention (PA) mechanism that keeps the symmetry of inputs. Unlike the
original attention mechanism, pairwise attention facilitates bidirectional information exchange between reference and query
signatures without introducing any additional assumptive temporal information. Subsequently, combining with the architec-
ture of Swin Transformer, we propose Pairwise Attention Swin Transformer(PAST). Our method fundamentally solves the
problem of introducing false assumptive temporal information during the process of input fusion, and also performs impres-
sively on several public datasets. Experimental results show that PAST outperforms most existing methods. In addition, we
also investigated the impact of background information from the CEDAR database on the results. It revealed that background
information in the training data has a significant impact on the verification performance.

Keywords Offline Signature Verification · Symmetry of Input · Swin Transformer

1 Introduction

Pairwise signature verification plays an essential role in bio-
metrics. Instead of comparing a single signature against
a writer-dependent reference model, as the traditional sig-
nature verification, pairwise signature verification involves
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comparing two signatures equally to determine whether they
are generated by the identical writer.

Signature verification is a vital area in biometrics with
broad practical applications, including finance, justice, insur-
ance, and criminal investigations [1]. In particular, incor-
porating swarm intelligence-based task scheduling [2] and
learning-based cloud server configuration [3], the consid-
eration of handwritten signature authentication is explored,
providing an additional layer of security for IoT devices.
However, it is a challenge due to difficulties in signature
sample collection, sparse features, and small inter-class vari-
ability. Moreover, changes in the writing style of the same
person over time complicate the task. The objective of signa-
ture verification is to distinguish between genuine signatures
and forged ones. Based on the degree of imitation, there
are three types of forged signatures: random forgery, sim-
ple forgery, and skilled forgery [4]. Random forgery involves
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using a signature sample from a different individual, whereas
simple forgery denotes a signature sample that mimics the
handwriting of the genuine author’s name. On the other hand,
skilled forgery entails a practiced imitation of the authentic
signature.

Depending on the signature acquisition mode, signature
verification can be categorized into two types: online and
offline [5]. The online approach is not widely available
due to the complex application scenario and the require-
ment of specialized equipment, although it contains abundant
state and positional information such as location, velocity,
and pressure. On the other hand, offline signature verifica-
tion involves obtaining signature samples by scanning or
photographing paper documents. The offline approach has
the advantages of low equipment requirements and content
limits compared to the online approach, making it more
practical for a broader range of applications and research
studies. However, the lack of dynamic information in offline
signatures poses a challenge in achieving good verifica-
tion performance [6]. This paper focuses mainly on the
offline approach. For convenience, all signature verification
methods mentioned here refer to offline signature verifica-
tion unless otherwise specified. Nowadays, the prevailing
approaches for signature verification often simplify mul-
tiple one-to-one match into a one-to-many recognition or
classification. This simplification works well in scenarios
involving single-input verification and enhances the system
speed. However, when it involves pairwise inputs, it poses
a serious issue that is easily overlooked. In theory, an ideal
verification model should yield identical output results for
pairwise inputs (A,B) and pairwise inputs (B,A). However,
for the multiclassification model, pairwise inputs (A,B)

(denoted as {a1, . . . , aN }, {b1, . . . , bN }) are often treated
as two-channel images, which are concatenated to form a
composite tensor (denoted as {a1, . . . , aN , b1, . . . , bN }) for
subsequent computations. The process introduces additional
sequence information that is not originally present. As a
result, with the invented temporal sequence, the symmetry
of pairwise inputs is disrupted ({a1, . . . , aN , b1, . . . , bN } �=
{b1, . . . , bN , a1, . . . , aN }), leading to potential differentials
in output results, which are unreasonable and unacceptable.

To address this issue, we propose an pairwise-attention
mechanism. It is performed to steer the model to constantly
exchange information between reference and query signa-
tures for producing the new respective featuremaps. The new
feature maps contain not only the characteristics of reference
and query signatures but also reflect their importance relative
to each other. As a result, it is more applicable to signature
verification. Our experiments on five datasets demonstrate
that Pairwise Attention Swin Transformer achieves sig-
nificant performance enhancements compared to existing
methods, making it a promising approach for signature veri-
fication. The main contributions of this paper are as follows:

• We propose a Pairwise Attention (PA) mechanism that
is highly efficient for pairwise signature verification.
Pairwise attention facilitates bidirectional information
exchange between reference and query signatures with-
out introducing any additional assumptive temporal
information.

• We adopt the Query-Reference branches approach to
establish input symmetry, ensuring that the input order is
not affected for both sequences. This innovated method
involves leveraging the Query and Reference branches
to create a balanced and symmetrical input structure,
thereby preserving the integrity of the input order in both
reference and query sequences.

• We conduct extensive comparative and ablation exper-
iments, demonstrating that our proposed method sig-
nificantly outperforms other SOTA methods on exist-
ing datasets. This indicates the generalizability of our
approach to signature verification across different lan-
guages. Furthermore, we investigated the influence of
background factors in the CEDAR dataset.

2 Related work

2.1 Signature verification

Signature verification is a complex task that involves differ-
entiating genuine signatures from forged ones. Traditional
approaches typically consist of three main steps: preprocess-
ing, feature extraction, and classification. Preprocessing is
the first step in signature verification, where operations such
as edge detection, binarization, and skew correction are per-
formed to preprocess the raw signature images and obtain
a more suitable form. Feature extraction plays a vital role
in signature verification, as it aims to learn relevant rep-
resentations that can effectively distinguish complex stroke
features. In the final step, learning based classifiers are used
to determine whether a signature is genuine or forged, based
on extracted features. Traditional handcrafted feature-based
methods heavily rely on the prior knowledge, struggling to
identify signatures written in different styles or orientations.
Deep learning methods can automatically learn discrimina-
tive features from rawdata, including signatureswith varying
styles and structures.

There are two mainstream methods for signature verifica-
tion in the field of deep learning: Siamese-network-based
and two-channel-based architectures. Siamese neural net-
works, initially proposed by Bromley et al. [7], employ a
weight-sharing mechanismwhere two identical subnetworks
share parameters. They are particularly useful for comparing
the similarity or dissimilarity between two inputs. One of
the key advantages of the Siamese architecture is its order
independence, as swapping the order of the signatures being
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compared does not impact the final result. In the context of
signature verification, Siamese networks can assess the sim-
ilarity between two signatures. For example, Xiong et al. [8]
proposed Multiple Siamese Network (MSN) with four par-
allel branches, incorporating an attention module to extract
salient features from handwriting. Similarly, Ghosh and
Rajib [9] employed a two-branch Recurrent Neural Network
(RNN) with Long Short-Term Memory (LSTM) to extract
rich structural and directional features for signature verifica-
tion. Likewise, Shen et al. [10] combined a one-dimensional
Multi-scale Residual-based Siamese Neural Network (1D-
MSNet) and adaptive boosting softmax classification, mak-
ing the network pay more attention to the information of
important feature sequences. Additionally, Victoria Ruiz et
al. [11] used Siamese Neural Networks to address off-line
handwritten signature verification with random forgeries,
augmenting the training set with synthetic data.

2.2 Signature verification

The Transformer architecture, originally developed for nat-
ural language processing, has been adapted for computer
vision tasks. Vision Transformer (ViT) [12] is one of themost
significant developments in this area. Several approaches
have emerged in the area of Vision Transformers. The Data-
efficient Image Transformer (DeiT) [13] aims to reduce
reliance on large datasets through distillation techniques
and has achieved state-of-the-art performance on benchmark
datasets like ImageNet. The Swin Transformer [14] is a
hierarchical ViT that reduces computation by partitioning
windows and has shown competitive performance on various
benchmarks. RegionViT [15] utilizes region-based attention
mechanisms to capture spatial dependencies in images and
outperforms other methods on benchmark datasets. DeepViT
[16] a depth-wise block to replace the traditional multi-head
self-attention mechanism, resulting in improved accuracy
and reduced parameters. Pyramid ViT [17] proposes a
pyramid-style architecture with multi-scale feature represen-
tation and performs well on benchmarks, especially for tasks
involving smaller objects. The evolution of Vision Trans-
formers is an exciting and innovative research area in com-
puter vision, offering the potential to propel the field forward
in new and groundbreaking ways. In the field of signature
verification, vision transformers are playing an increasingly
important role. Li et al. [18] proposes a model based on
vision transformers, TransOSV,which significantly enhances
offline signature verification by effectively integrating global
and discriminative local features. Chu et al. [19] proposes
a novel Multi-Size Assembled-Attention Swin-Transformer
network that leverages self-attention and cross-attention
mechanisms for authenticating signature handwriting. Wei
et al. [20] proposes the inverse discriminative network
(IDN) for handwritten signature verification, employing a

novel multi-path attention mechanism across discriminative
and inverse streams to enhance focus on signature strokes.
However, there are still several challenges that need to be
addressed, such as improving the interpretability and robust-
ness of Vision Transformers, developingmore efficient train-
ing andoptimization techniques, and exploring their potential
for other computer vision tasks beyond object recognition.

In the task of signature verification, the self-attention
mechanismhas certain limitations.Theoriginal self-attention
mechanism is designed to handle individual input sequences
and may face challenges when dealing with paired signa-
ture inputs.These limitations include: (1) The self-attention
mechanism treats each element in the input sequence as
queries, keys, and values, and computes attention scores
between them. However, this unidirectional attention mech-
anism is limited in capturing the interdependencies between
input sequences. In signature verification, where the mutual
dependencies and correlations between signatures are cru-
cial, the self-attention mechanism falls short in directly
modeling such interdependencies. (2) The self-attention
mechanism independently processes each input sequence
without direct information exchange or communication. As a
result, important spatial or sequential patterns between input
signatures may not be effectively utilized during the feature
extraction stage. This limitation hampers the self-attention
mechanism’s ability to fully leverage significant spatial or
sequential patterns in signature verification tasks, leading to
suboptimal feature extraction. In contrast, our proposed Pair-
wise Attention Swin Transformer (PAST) method addresses
these limitations by introducing the pairwise-attentionmech-
anism.

To address the issues caused by the framework and self-
attention mentioned above, we propose the Pairwise Atten-
tion Swin Transformer (PAST). It introduces the pairwise-
attention mechanism, which allows both inputs to participate
in the attention mechanism and better focuses on their cor-
relation. This attention mechanism allows the model to
selectively focus on different regions of the input feature
image and facilitate information exchange between input
feature signatures during the feature extraction process.
Compared to unidirectional self-attention mechanism’s, the
pairwise attention mechanism captures the interdependence
between input sequencesmore effectively, improving the per-
formance of signature verification tasks. Additionally, PAST
facilitates information exchange and weight sharing between
input feature signatures, enhancing feature extraction by uti-
lizing spatial and sequential patterns within input signatures.
PAST improves the handling of correlation and dependency
between input signatures in signature verification by using
the pairwise-attention mechanism. In comparison, we devel-
oped a Swin-Siamese and a Swin-2-channel architecture
using the Swin Transformer. Our results from several signa-
ture datasets demonstrate that PAST outperforms these mod-
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Fig. 1 The structure of the proposed Pairwise Attention Swin Transformer

els and traditional self-attention mechanisms, showcasing its
efficacy in handling dependencies and spatial-sequential pat-
terns more effectively. This innovation not only optimizes
feature extraction but also mitigates the negative impacts of
signature order variations inherent in two-channel systems.

3 Method

We present Pairwise Attention Swin Transformer (PAST),
with a designed architecture for signature verification, which
utilizes the pairwise-attention mechanism to keep the sym-
metry of pairwise inputs. An overview of the Pairwise
Attention Swin Transformer (PAST) is presented in Figure 1.
The network comprises two weight-shared branches, R and
Q, dedicated to processing reference and query signatures,
respectively. For the R-branch, an input reference signature
with a size of H × W × 1 is first split into non-overlapping
patches with 4 × 4 pixels by the patch partition module,
transforming the inputs into sequence embedding. During
this process, the dimension of the feature map is extended to
48, and the feature spatial is reduced by 16×.

Our proposed pairwise attention swin transformer draws
structural inspiration from the Swin Transformer, maintain-

ing the use of four stages for propagation. In the Stage 1, each
patch undergoes linear projection to a higher-dimensional
embedding space using a learnable linear projection matrix
(linear embedding). The resulting patch embeddings, with
dimensions ( H×W

16 ,C), where C is the embedding dimen-
sion, are then processed by a series of branch fusion blocks.
Each block involves a multi-head pairwise-attention mech-
anism followed by a position-wise feed-forward network.
Thismechanism facilitates bidirectional information transfer
between reference and query signatures, while the feed-
forward network introduces non-linearity to the attended
features. Each block outputs a sequence of patch embed-
dings with the same dimension as the input, resulting in a
feature map with reduced spatial resolution and increased
feature dimensionality. Stage 2 is akin to Stage 1, but with
the patch partition module replaced by a patch merging mod-
ule. This module aggregates neighboring patches, producing
a smaller feature map with increased spatial resolution and
reduced feature dimensionality. The feature map is then pro-
cessed by another set of branch fusion blocks to extract more
complex features. In Stage 3, the input feature map is again
processed by a patch partition module to obtain a new set of
patches. These patches are then processed by a set of branch
fusion blocks to extract multi-scale features. The final stage
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of the proposed architecture is similar to Stage 3, except that
the number of the branch fusion blocks. The output of this
stage is a set of high-level features that can be fused with the
output of the Q-branch and eventually fed into the decision
layer for determining whether two signatures belong to the
same person.

In contrast to the SwinTransformer, PASTdiverges signif-
icantly in the following aspects: (1) PAST employs Q − R
branches approach to ensure input symmetry, providing a
foundational possibility for both input orders: reference sig-
nature + query signature and query signature + reference
signature (as the fusion in the early stage makes it impos-
sible to distinguish later on); (2) For independent inputs,
our proposed pairwise attention enables to achieve symmet-
ric attention computation; (3) Building upon the discussed
aspects, the branch fusion block is formulated by com-
bining these elements. Within the block, features from the
Q − R branches undergo processing through LayerNorm
(LN) layers, Window Multi-head Pairwise-Attention (W-
MPA), Multilayer Perceptron (MLP), and Shift Window
Multi-head Pairwise-Attention (SW-MPA), each using equal
weight.

3.1 Patch partition

In the PAST architecture, the step of patch partitioning
involves segmenting the input image, which is represented
as I ∈ R

H×W×C , where H ,W , and C respectively represent
the image’s height, width, and number of channels. This seg-
mentation process transforms the image into a collection of
smaller, discrete patches, each measuring P × P , arranged
to ensure there is no overlap, thus preparing the image for
sophisticated analysis. It creates a grid of fixed-size patches,
each treated as an individual unit, thereby converting the
image’s complex structure into a simplified and organized
data collection.

3.2 Linear embedding

After the input image is partitioned into smaller, non-
overlapping patches of fixed dimensions P × P , each
patch undergoes a transformation through linear embed-
ding. Linear embedding is achieved by applying a linear
transformation to the flattened pixel vectors of each patch.
Specifically, Linear Embedding projects the tensor with
dimensions (H/4×W/4) × 48 onto an arbitrary dimension
C , resulting in a tensor with dimensions (H/4×W/4) ×C .
Furthermore, linear embedding imbues the patcheswith posi-
tional information. In the absence of inherent sequential data
within images, unlike text, the pairwise transformer relies on
this embedding process to incorporate positional encodings,
enabling the model to understand the spatial relationships
between different patches of the image.

3.3 Patchmerging

The Patch Merging layer serves as a downsampling mecha-
nism designed to reduce resolution and adjust the number of
channels, promoting a hierarchical structure while conserv-
ing computational resources and minimizing information
loss. Each downsampling step reduces the sample size by
a factor of two, effectively halving the dimensions in both
the row and column directions. This reduction is achieved by
selecting elements at intervals of two, creating a new patch
from these elements. Subsequently, all the newly formed
patches are concatenated to form a single tensor, which is
then flattened. At this stage, the channel dimension increases
to four times its original size due to the reduction in the
height and width dimensions by half. A fully connected
layer then processes this expanded tensor to adjust the chan-
nel dimension back to twice its initial size. Patch Merging
efficiently compacts the data and preserves essential infor-
mation through careful patch selection and recombination.
By expanding and then strategically reducing the channel
dimension, the model maintains critical features necessary
for performance, optimizing both the data structure and com-
putational efficiency without significant loss of information.

3.4 Pairwise-attention

The pairwise-attention mechanism is designed for pair-
wise verification tasks. It addresses the limitations of the
self-attention mechanism by taking into account both the
reference and query signatures in the attention mechanism.
This enables effective capture of correlations and interdepen-
dencies between the inputs. Figure 2 illustrates the internal
structure diagram of the complete pairwise-attention mecha-
nism. The dashed lines in the left half represent the attention
generation process from the reference signature to the query
signature, while the solid lines in the right half represent the
attention generation process from the query signature to the
reference signature. Similar to self-attention, each attention
generation requires three values, q, k, and v, to characterize
the relationship between the reference and query signatures.
In the context of our proposed pairwise-attention, we focus
on the dependencies between the query signature and the ref-
erence signature. As depicted by the dashed lines in the left
half of Figure 2, the input features (reference feature R and
query feature Q) are first transformed into sequences of q, k,
and v using a linear layer. Similarly, the right half of Figure
2 undergoes a transformation, but in this case, it converts the
reference feature and query feature into sequences of k, q
and v. The reference and query features are generated from
the respective feature maps of the reference and query signa-
tures. The feature vectors for R and Q can be represented
as [r1, r2, r3, ..., rN ] and [q1, q2, q3, ..., qN ], respectively,
where N represents the size of the spatial dimension and
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Fig. 2 The process details of pairwise-attention

C represents the number of channels. In this scenario, the
three vectors can be formalized as follows:

ql = L1(R) qr = L1(Q) (1)

kl = L1(Q) kr = L1(R) (2)

vl = L2(R) vr = L2(Q) (3)

Where, L1 and L2 represent the linear layers, and R and
Q (∈ RC×N ) represent the feature maps of the reference and
query signatures, respectively.

Next, the associations between the input R and Q aremod-
eled based on the interactions among attention q, k and v. In
the proposed pairwise-attention mechanism, the dot product
is used to establish the link between q and k. After applying a
softmax layer, the attention map of q for k can be formulated
as follows:

Siglqk = Softmax(ql · kl T ) (4)

Sigrkq = Softmax(kr · qr T ) (5)

Sli j = exp(L1(Ri ) · L1(Q j )
T )

∑N
i=1 exp(L1(Ri ) · L1(Q j )T )

(6)

Sri j = exp(L1(Qi ) · L1(R j )
T )

∑N
i=1 exp(L1(Qi ) · L1(R j )T )

(7)

where Siglqk represents the significance of q for k, Sigrkq
represents the significance of k for q, and Sri j represents the

importance of the i th vector in Q for the j th vector in R,
while Sli j represents the importance of the i th vector in R for

the j th vector in Q.

Finally, the interaction between the attention map matrix
Siglqk or Sigrkq and the global vector v is considered. To
capture the interactions, an element-wise product is used.
The formulation is as follows:

AttenlRQ = Softmax(L1(R) · L1(Q)T )√
dk

· L2(R) (8)

AttenrQR = Softmax(L1(Q) · L1(R)T )√
dk

· L2(Q) (9)

where AttenlRQ and AttenrQR represents the attention

between R and Q, and
√
dk is the scaling factor to stabi-

lize the gradients.

3.5 Branch fusion block

The branch fusion block follow the shifted window and par-
titioning strategy of the Swin Transformer while replacing
the self-attention mechanism with the proposed pairwise-
attention mechanism. This ensures a fair comparison with
the Swin Transformer. The proposed window multi-head
pairwise-attention (W-MPA) and shift window multi-head
pairwise-attention (SW-MPA) correspond to the window
multi-head self-attention (W-MSA) and shifted window
multi-head self-attention (SW-MSA).

The lower part of Figure 1 shows the branch fusion blocks.
In Figure 1, we can observe two consecutive branch fusion
blocks. Block l consists of LayerNorm (LN) layers,W-MPA,
residual connections, and a 2-layerMLP.Block l+1 is similar
to Block l, except that W-MPA is replaced with SW-MPA. It
is important to note that Block l and Block l+1 are executed
alternatively and sequentially.
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The computational procedure for an input feature in the
branch fusion blocks is as follows:

R1 = W-MPA(LN (R)) + R (10)

R̂ = MLP(LN (R1)) + R1 (11)

R̂1 = SW-MPA(LN (R̂)) + R̂ (12)

R̂2 = MLP(LN (R̂1)) + R̂1 (13)

where R1 and R̂ represent the output features of the (S)W-
MPA and theMLPmodule for Block 1, respectively.W-MPA
and SW-MPA represent window-based multi-head pairwise-
attention using regular and shifted window partitioning
strategies, respectively.

4 Experiments

In this section, we present several experiments that reflect the
various aspects of the proposed method for establishing the
authorship of offline handwritten signatures. Additionally,
we analyze the impact of signature background on verifica-
tion performance.

4.1 Datasets and experimental protocol

To demonstrate the effectiveness of the proposed PAST,
a series of experiments are conducted on four signature
datasets:CEDAR[21],BHSig-H&BHSig-B [22] andUTSig
[23]. TheCEDARdataset is awell-knownEnglish offline sig-
nature dataset that includes 1,320 genuine and 1,320 forged
signatures obtained from55writers, where eachwriter has 24
genuine and 24 forged signatures. To simulate realistic condi-
tions, all samples are collected at different periods of time and
in a fixed 2×2 inches space. The signatures are then digitized
at 300 dpi resolution and saved as PNG files. The BHSig260
database comprises 6,240 genuine and 7,800 forged signa-
tures from 260 individuals, which can be divided into two
parts: BHSig-H, a challenging Hindi dataset with 160 writ-
ers, and BHSig-B, a publicly available Bengali dataset with
100 writers. Each writer in both datasets provided 24 gen-
uine signatures and 30 forgeries, and the samples are obtained
from people with diverse educational backgrounds and ages
to simulate a real application scenario. UTSig is a Persian
offline signature dataset with 8,280 signatures from 115writ-
ers. Each writer has 27 genuine and 45 forged signatures.
The dataset considers variables such as signing period, writ-
ing instrument, signature box size, and observable samples
for forgers. All signatures are completed on A4-sized white
forms, scanned at 600 dpi in eight-bit grayscale, and saved
in TIF format.

We take paired inputs comprising genuine and forged
signatures from writers. The signature pairs can be further

partitioned into two categories: positive pair and negative
pair. The positive pair comprises two genuine signatures, and
the negative pair consists of genuine and forged signatures.
Both pairs are composed of positive and negative samples,
respectively. In this case, for each writer with 24 genuine
signatures and 30 forged signatures included in the BHSig-B
dataset, there areC2

24 = 276 genuine-genuine signature pairs
(positive pairs) and 24 × 30 = 720 genuine-forged signa-
ture pairs (negative samples). To balance the positive and
negative samples, 276 genuine-forgery pairs are randomly
selected fromeachwriter to balance the similar anddissimilar
classes. Similarly, the division methods of other datasets fol-
low the same logic.Adetailed summaryof dataset divisions is
provided in Table 1. Our dataset division strategy largely fol-
lows the standard evaluation framework establishedwhen the
original dataset was published. However, in order to ensure
consistency and comparability, it is slightly different from
the division strategies in previously published papers.

Evaluation of the proposed technique is measured through
four indices: false acceptance rate (FAR), false rejection rate
(FRR), Equal Error Rate (EER), and Accuracy (ACC). The
specific calculations are shown in the following formula:

FAR = FP

T N + FP
(14)

FRR = FN

T P + FN
(15)

ACC = T P + T N

T N + FN + T P + FP
(16)

where T P (True Positive) is the number of correctly identi-
fied legitimate signatures, T N (True Negative) is the number
of correctly identified forgeries, FN (False Negative) is the
number of legitimate signatures misclassified as forgeries,
and FP (False Positive) is the number of forgeries misclas-
sified as legitimate signatures. The Equal Error Rate (EER) is
another important evaluation metric, defined as the error rate
at the point where FAR and FRR are equal. In practice, the
EER is computed by adjusting the decision threshold τ and
finding the value τ ∗ that minimizes the absolute difference
between FAR and FRR:

τ ∗ = argmin
τ

|FAR(τ ) − FRR(τ )| , (17)

EER = FAR(τ ∗) = FRR(τ ∗), (18)

In PAST, the Decision Module operates by comparing a sim-
ilarity score against a threshold τ to determine acceptance or
rejection. The EER computation involves: (1) sweeping deci-
sion thresholds τ across the full score range; (2) calculating
FAR(τ ) and FRR(τ ) at each threshold; (3) identifying the
threshold τ where FAR and FRR are closest; (4) averaging
these two error rates to obtain EER.
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Table 1 Details of experimental
protocol on different datasets

Dataset Writers of Training Writers of Test Positive and Negative Pairs
Trained per Writer (P/N)

CEDAR 50 5 276/276

BHSig-H 100 60 276/276

BHSig-B 50 50 276/276

UTSig 60 55 351/351

Note: References for training and testing protocols for each dataset: CEDAR ([11] [20] [27] [41]), BHSig-
H([11] [20] [27]), BHSig-B([11] [20]), and UTSig (following the same strategy as the aforementioned three
datasets)

Table 2 Impact of allocating the number of branch fusion blocks to
each of the four stages in PAST on verification performance

Stage 1 Stage 2 Stage 3 Stage 4 ACC

2 2 18 2 96.43

6 6 6 6 95.37

2 18 2 2 93.88

The bold value indicates the best performance

4.2 Ablation analysis of the proposed PAST

In this section, we ablate important design elements in
the proposed Pairwise Attention Swin Transformer (PAST),
focusing on the impact of different combinations of trans-
former blocks in PAST, different associated object values,
balanced and unbalanced training datasets, and two strategies
for fusing the two branches of output features. Moreover, all
our ablation experiments were conducted on the BHSig-B
dataset for both training and testing.

Impact of the allocation of PAST Transformer blocks:
Because the PAST structure is divided into four stages, we

distribute the pairwise attention a mechanism across these
stages, resulting in configurations of 2-2-18-2, 6-6-6-6, and
2-18-2-2, where each number in the sequence represents the
number of blocks assigned to the four stages in the net-
work. The results, as shown in Table 2, suggest that the
network achieves the highest performance with a 2-2-18-
2 block allocation, with a verification accuracy of 96.43%.
2-2-18-2 block allocation, with a verification accuracy of
96.43%. In the subsequent experiments, we keep the default
configuration of 2-2-18-2.

Impact of the value in the context of the interactive attention
mechanism:

Specifically, based on the self-attention calculation
method, we represent the features generated in the atten-
tion pairing as the actual input object. Here, Q represents
the features generated by the reference signature, while K
represents the features generated by the query signature.
We studied three different sequences of matrix-vector oper-
ations: (1) Q vector multiplied by K matrix, then multiplied

Table 3 Impact of different values on verification performance in inter-
action attention mechanism

Q K V ACC

Reference Query Reference 96.43

Query 95.06

(Reference+Query)/2 92.17

The bold value indicates the best performance

Table 4 Verification performance comparison between Balanced Sam-
ples (BS) and Unbalanced Samples (US) training methods

Training Method FAR FRR ACC EER

BS 4.28 2.86 96.43 3.57

US 4.33 5.41 95.13 9.74

Bold values indicate the best performance in each evaluation metric

by Qmatrix; (2) Q vectormultiplied by K matrix, thenmulti-
plied by K matrix; (3) Q vector multiplied by K matrix, then
multiplied by the average of Q and K matrices, (Q + K )/2.
The three different operation sequences involve changing the
content of values, representing combinations of value vectors
from Q, K , and both Q and K . The results of this analysis,
as shown in Table 3, indicate that the network achieved the
highest performance when the value originated from the ref-
erence signature feature map.

Impact of the sample balance on verification performance:
The results are presented in Table 4, which compares the

use of balanced and unbalanced training samples. The Bal-
anced Samples (BS) method trained with an equal number
of positive and negative samples exhibited superior perfor-
mance compared to the Unbalanced Samples (US), which
trained with negative samples twice as abundant as positive
samples. These findings suggest that the balance between
positive and negative samples significantly affects verifica-
tion performance, and utilizing balanced samples during the
training phase can lead to improved results.

Impact of the fusion on two branches:
The first strategy, referred to as ’concat’, involves concate-

nating both branches prior to layer normalization. The second
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Table 5 Comparison of two strategies for fusing two streams of output
features

Fusion Strategy ACC FAR FRR ERR

Concat 95.81 4.02 4.36 4.19

Sum 96.43 2.86 4.28 3.57

Bold values indicate the best performance in each evaluation metric

approach, referred to as ’sum’, involves summing the out-
puts of both branches. As illustrated in the Table 5, the ’sum’
strategy demonstrates superior performance compared to the
’concat’ strategy. In general, the ’sum’ strategy generates a
new feature that encapsulates some of the key characteris-
tics of the input features, although this process may result
in some information loss. On the other hand, the ’concat’
strategy concatenates the input features directly, allowing the
model to learn how to effectively handle them. However, this
strategy is computationally demanding. Despite the varied
results of these approaches in the literature, we find that the
’sum’ strategy are appropriate for our method.

4.3 Comparative study of PAST and Swin
Transformer under different frameworks

We further investigate the performance of pairwise attention
and self-attention in signature verification. For fair compari-
son andoptimal performance evaluation,we establishedfixed
configurations in both PAST and Swin Transformers. Differ-
ent numbers of transformer blocks were allocated at each
stage, and the final transformer block allocation was set to
2-2-18-2. Additionally, the dimensionality of the input fea-
tures after the linear embedding layer in Stage 1 was set to
128. In the models using self-attention, we incorporate two
commonly used methods in signature verification, namely
the 2-channel and Siamese approaches for data modeling. In
the experiment, we maintain both Siamese-network-based
and two-channel-based architectures, employing the Swin
Transformer Block from the Swin Transformer and con-
figured as described above. This configuration aligns with
our PAST, having the same reference signature and query
signature inputs. As a result, we obtain two derived mod-
els based on the Swin Transformer, namely Swin-Siamese
and Swin-2-channel. The experimental results, as demon-
strated in Table 6, based on four public datasets, show that
the PAST model outperforms the Swin-Transformer model
on all datasets. For example, on the BHSig260-B dataset,
our model achieves a FAR of 4.28%, an FRR of 2.86%, and
an ACC of 96.43%, significantly outperforming the Swin-
Siamese and Swin-2-channel models. Only on the UTSig
dataset, the Swin-2-channel model performs better than our
method in terms of FRR, but our method achieves superior
results in terms of FAR and ACC. These results indicate that

Table 6 Performance comparison of pairwise-attention and self-
attention on multiple signature datasets

Model DATASET FAR FRR ACC

Swin-Siamese BHSig260-B 25.42 4.08 85.25

Swin-2-channel 8.89 11.24 89.93

PAST 4.28 2.86 96.43

Swin-Siamese BHSig260-H 13.06 17.08 84.93

Swin-2-channel 12.45 14.71 86.42

PAST 5.50 4.20 95.26

Swin-Siamese CEDAR 21.08 4.64 87.14

Swin-2-channel 9.48 12.11 89.21

PAST 5.00 3.35 95.83

Swin-Siamese UTSIG 23.69 24.47 75.77

Swin-2-channel 27.34 19.29 76.68

PAST 22.08 22.18 78.87

Bold values indicate the best performance in each evaluation metric

Table 7 Comparison of the proposed PAST with existing methods on
CEDAR

Model FAR FRR ACC EER

SigNet [11] 0 0 100.00 0

MSN [8] 3.18 0 98.40 1.63

2C2S [26] 0 0 100.00 0

2C2L [27] – – 100.00 0

LQP [28] 5.01 6.12 – –

BFS [29] 4.67 4.67 – –

PAST(ours) 0 0 100.00 0

Bold values indicate the best performance in each evaluation metric
Note: The performance results of all the comparative methods are
obtained from the published papers

the proposed PAST model with pairwise attention performs
better than the Swin-Transformer model with self-attention
and generalizes well across multiple signature datasets.

4.4 Comparisons with the state-of-the-art

We conducted a comparative analysis of the proposed PAST
against SOTA across four datasets. On each dataset, PAST
delivered outstanding verification performance.

4.5 The secret of achieving 100% accuracy on the
CEDAR

This section examines the impact of signature background
on the performance of the CEDAR dataset. Figure 3 shows
some examples of signature images in the CEDAR dataset.
An interesting phenomenon is observed during experiments
on the CEDAR dataset: when the model is trained on the
CEDAR dataset that includes backgrounds, it achieves 100%
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Table 8 Comparison of the proposed PAST with existing methods on
BHSig-H

Model FAR FRR ACC EER

SigNet [11] 15.36 15.36 84.64 15.36

MSN [8] 17.06 5.16 88.88 11.31

LBP and ULBP [22] 24.47 24.47 75.53 24.47

2C2S [26] 8.66 9.98 90.68 9.32

2C2L [27] – – 86.66 13.34

SURDS [32] 12.01 8.98 89.50 –

IDN [20] 8.99 4.93 93.04 –

AVN [31] – – 94.32 5.65

PAST(ours) 5.50 4.20 95.26 4.85

Bold values indicate the best performance in each evaluation metric
Note: The performance results of all the comparative methods are
obtained from the published papers

Table 9 Comparison of the proposed PAST with existing methods on
BHSig-B

Model FAR FRR ACC EER

SigNet [11] 13.89 13.89 86.11 13.89

MSN [8] 10.42 6.44 91.56 8.43

TransOSV [18] 9.90 9.90 – 9.90

LBP and ULBP [22] 33.82 33.82 66.18 33.82

2C2S [26] 5.37 8.11 93.25 6.75

2C2L* [27] 10.44 9.37 88.08 11.92

SURDS [32] 19.89 5.42 87.34 –

LBPKNN [33] – – 90.36 –

IDN [20] 4.12 5.24 95.32 –

AVN [31] – – 93.80 6.14

PAST(ours) 4.28 2.86 96.43 3.57

Bold values indicate the best performance in each evaluation metric
Note: The performance results of all the comparative methods are
obtained from the published papers. Results for the method marked
with an * are obtained from Reference [40].

Table 10 Comparison of the proposed PAST with existing methods on
UTSIG

Model FAR FRR ACC EER

UTSig [23] 21.29 39.27 – –

DMML [34] 9.09 32.42 – –

FCN* [35] 32.43 32.50 – –

GED [36] 29.49 7.88 – –

PAST(ours) 22.08 22.18 78.87 22.13

Bold values indicate the best performance in each evaluation metric
Note: The performance results of all the comparative methods are
obtained from the published papers. Results for the method marked
with an * are obtained from Reference [23]

accuracy. However, when the background is removed, the
model’s validation performance deteriorates. Table 11 is

Fig. 3 The comparison of signatures before and after processing

Table 11 The impact of signature background on CEDAR dataset per-
formance

Model CEDAR FAR FRR ACC

Swin-Siamese Without background 21.08 4.64 87.14

Swin-2-channel 9.48 12.11 89.21

PAST 5.00 3.35 95.83

Swin-Siamese With background 0 0 100

Swin-2-channel 0 0 100

PAST 0 0 100

divided into two parts, one for models trained without back-
grounds and the other for models trained with backgrounds.
It shows the results of the experiment exploring the impact
of signature background on the performance of the pro-
posed method on the CEDAR dataset. For models trained
without backgrounds, the proposed PAST achieves the best
performance with a 5.00% FAR, 3.35% FRR, and 95.83%
accuracy. Swin-Siamese achieved a 21.08% FAR, 4.64%
FRR, and87.14%accuracy,while Swin-2-channel achieved a
9.48% FAR, 12.11% FRR, and 89.21% accuracy. However,
when models are trained with backgrounds, an interesting
phenomenon is observed. All models achieve perfect per-
formance with a 0% FAR, 0% FRR, and 100% accuracy.
It indicates that the presence of background information
in the training data greatly benefits the model’s perfor-
mance in recognizing signatures. The phenomenon suggests
that the perfect results obtained by current methods on the
CEDAR dataset are unreliable. Since the forged signatures
in the CEDAR dataset were collected without background
noise, the model has effectively learned the data bias during
training, leading to a 100% recognition rate. Therefore, we
recommend that the original CEDAR dataset should not be
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Table 12 Cross-language
validation results of PAST on
different signature datasets

Dataset BHSig-B BHSig-H CEDAR UTSig

BHSig-B 94.29 76.40 51.63 54.24

BHSig-H 82.96 95.83 52.54 53.90

CEDAR 62.53(50.00) 64.49(50.00) 95.83(100.00) 54.96(50.00)

UTSig 56.50 51.22 82.46 78.87

Bold values indicate the best performance for each test dataset when trained on the corresponding training
dataset
NOTE: The accuracy value in parentheses indicates the model’s performance on the CEDAR dataset with
background information included, while the value outside parentheses shows performance without it

used in the validation of subsequent signature verification
methods.

4.6 Cross-dataset validation

This experiment evaluates the generalization ability of the
proposed PAST across different languages. To assess this,
we conducted cross-language verification experiments using
four different language-specific signature datasets: CEDAR,
BHSig-B, BHSig-H and UTSig. The experimental results
were then represented using a confusion matrix, where each
row represents training on one dataset and testing on dif-
ferent datasets. As shown in Table 12, the results indicate
that PAST performs well in intra-language testing but expe-
riences a decrease in performance in cross-language testing
due to dataset variations. We observed an interesting phe-
nomenon in the CEDAR dataset, or more precisely, a bias.
Specifically, all the collected genuine signatures have normal
backgrounds, whereas those forged signatures are produced
in clean environments. This phenomenon explains the logic
behind the perfect performance of many models on this
dataset, namely that these models have learned this trick
rather than effective handwriting featuremapping.When fac-
ing cross-dataset challenges, overfitting leads to a collapse in
the model’s generalization performance (50% indicates that
the model is purely outputting randomly). However, exper-
imental results demonstrate that the framework proposed
in this study, when trained on the CEDAR dataset without
background, enables the model to exhibit a certain level of
generalization ability. In subsequent research, it is essential to
emphasize the rigor of dataset construction to further enhance
the reliability of research conclusions.

5 Conclusion

This paper introduces Pairwise Attention Swin Transformer
(PAST), a novel approach for signature verification that
leverages the pairwise-attentionmechanism tailored for pair-
wise verification tasks. The experimental results demonstrate

that PAST outperforms both the baseline Swin Transformer
and existing methods across all four signature datasets,
achieving remarkable performance. These findings under-
score the significance of pairwise-attention in signature
verification tasks, validating the effectiveness of PAST in
capturing subtle differences between genuine and forged sig-
natures. The proposed PAST exhibits tremendous potential
for practical signature verification applications, address-
ing the limitations of existing methods and leveraging the
innovative pairwise-attention mechanism. Furthermore, our
experiments highlight the substantial impact of the pairwise-
attention mechanism on the model’s performance, with an
increase in the number of branch fusion blocks and the
embedding dimension further enhancing accuracy.While the
exploration of larger models was constrained by hardware
limitations, our research suggests that investigating larger
models holds the potential to further amplify the efficacy of
our pairwise-attention mechanism.
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